
1

tkCoLa

Tk-based Command Language
Jason McDermott
JEMWorks Software, 2000
jemworks@jasonya.com
http://www.jasonya.com/jemworks

Table Of Contents

I. TKCOLA OVERVIEW ..4

II. COMMAND LANGUAGE SYNTAX...4

A. OVERVIEW..4
B. SPECIAL CHARACTERS...5
C. GLOBAL DECLARATIONS..5

import_file...5
import_module..6
prefix ...6
group_range...6
set_var ...7

D. COMMAND INITIALIZATION..7
command ...7

command example: ..8
command_set ..8
component ...8

E. COMMAND MODIFIERS...9
bind_all..9
bind_top..9

Event Bindings ...9
label ...10
static...10
default_callback ..11
post_command ..11
command_flag...12

F. OPTIONS..12
Miscellaneous Options ..12

insert_component..12
Formatting Options...13

row/column ...13
set_tk_config/add_tk_config ..14

Tk Configuration Options ..14
Interface Options ..15

var_name field ..15

2

label field ..15
var_type field..15
default field...16
Option Examples ..16

entry...17
check..17
link...18
scale ...18
rebutton..19
frame..19
radio...20
radopt...20
pop/pop_menu/popup_menu ..20
menu_item...21
menu_sep/menu_separator ...21
select/multi_select...21
open_file..22
save_file ..22

Inert Options...23
text ...23

Text Example..23
button...24
menu ..24

G. OPTION GENERATORS..25
button_gen...25
check_gen..26
entry_gen...26

Generator Examples ...27
H. OPTION MODIFIERS ...27

bind..27
callback..28
set_state ...28
default_color ...28

III. COMMAND CLASS DESCRIPTIONS ..29

A. CLASS COMMAND_STRUCTURE..29
B. CLASS COMMAND_RECORD..29
C. CLASS OPTION...29

Attributes ..29
Methods ..30

IV. USE OF THE COMMAND STRUCTURE...30

A. INITIALIZING A COMMAND STRUCTURE ..30
Command Structure Example ..30

B. ADDING A COMMAND MENU..31
method Command_Structure.menu_init...31

Options..31
Menu Example..32

method Command_Structure.menu_set_groups...32

3

Options..32
C. OPENING A COMMAND...33

method Command_Structure.manager_window ..33
Options..33

D. CLOSING A COMMAND...34
method Command_Structure.manager_ok...34

Options..34
method Command_Structure.manager_cancel ..34

Options..34
method Command_Structure.manager_apply..35

Buttons Example ..35
E. SPECIAL COMMAND STRUCTURE METHODS ..35

method Command.command_default_object ...36
Options..36

method Command.command_return_object ..36
Options..36

V. TKCOLA EXAMPLES ...36

A. A SIMPLE COMMAND EXAMPLE...37
B. A MORE COMPLEX COMMAND EXAMPLE ...38
C. THE APPLICATION GUI EXAMPLE ..39
D. THE COLOR PICKER EXAMPLE ...40

class Color_Picker..40
Options..40
Methods ..41

Creating the _Color_Picker Command ...41
The Example Command ..42

VI. DEFAULT DEFINITIONS ..44

4

I. tkCoLa Overview

The Tk Command Language (tkCoLa) is a Python module which allows rapid creation of

GUI’s for functions written in Python. It is essentially a simplified interface to the Tkinter

module (which is in turn, an interface to the Tk/Tcl 8.0 library), that allows entry of values by

the user and passage of the values to the specified functions in Python. This is especially useful

for creation of programs which require a great deal of flexibility and are likely to be changed or

added-to frequently. It also works well for creation of basic user interfaces, as long as you don’t

want to get too fancy.

Implementation of tkCoLa is in two parts. An implementation of the

Command_Structure class provides the initialization and interface to the commands.

Commands are specified in an external command file which employs a simple, fairly rigid

syntax to define the user interfaces for particular commands. Through the Command_Structure

commands can be listed in a list box or in a command menu. Commands can be grouped into

functional groupings and this may be reflected in the list or menu.

II. Command Language Syntax

A. Overview

The syntax of the tkCoLa language generally follows the form:

keyword |field 1 |field 2 |field 3 …

where the keyword may be a global-type declaration, a command definition, or options which

are contained by a command. A command is a container for all user input necessary for a

particular function in Python. Therefore, a command will generally have a function call

associated with it. This means that the user can invoke the command window, enter all the

values required for running a function, then execute the function, from within the command

structure. Command definitions will generally have the following layout, noting that the

indentation shown is simply for purposes of clarity, it is not required in tkCoLa:

command |title |function

command_modifier |f1 |f2

optionA |f1 |f2 |f3 |f4

5

optionB |f1 |f2 |f3 |f4 …

option_modifier |f1 |f2 …

Since the function is called in Python it must be specified as a Python call from inside the

command structure. The command structure has a parent variable which refers to the object

which called for its initiation. Function and variable references from inside the command

structure take the form of self.parent.function or self.parent.variable. The

exception is when a Python module has been invoked from inside the command structure and

the function is in the imported module.

Commands are referred to by their titles and the titles must therefore be unique.

Required fields are denoted with an asterisk. Leaving non-required fields blank will give

the default behavior.

B. Special Characters

| : this character serves to separate fields for commands.

: specifies a comment line.

$: used to indicate the continuation of an input line past a return. It also separates

keyword assignments from a procedure specification and in certain cases

separates attribute names from the name of the list or dictionary which contains

them (see the Generator specifications, below for clarification). Also indicates the

presence of a special value, for defaults or other fields, for example a variable

reference instead of a simple string for the default field. Serves several other

separation roles (see text option below for an example).

C. Global Declarations

import_file
import_file |command_file

import …

Imports an external command file and appends it to this one.

6

NOTE: a warning will be issued to STDOUT if the imported command file

contains commands which having non-unique titles but the old commands will be

replaced with the newer ones.

*command_file: Valid TkCoLa command file.

import_module
import_module |module_name

module …

Imports a Python module into the command structure. The module can

then be referenced from within tkCoLa by referencing the tkCoLa global variable

with the name module_name (i.e. $Module_Name…).

*module_name: Name of a Python module (minus the .py).

prefix
prefix |function_prefix

Designates a global ‘scope’ prefix such that functions and variables

beginning with a ‘.’ will be preceded by the function_prefix. If no prefix is

specified in a command file, the prefix defaults to self.parent. In the default

case a function specified as .my_function would be interpreted as

self.parent.my_function.

*function_prefix: a python object designation that can be used from

inside a command structure (i.e. beginning with

self.parent).

group_range
group_range |group_name

Specifies that commands following will be included in the listed group. The

group does not need to exist already, if it does, the following commands will be

7

added to commands already in the group. The group_range declaration is only

terminated by another declaration of group_range.

*group_name: Command group name.

set_var
set_var |variable_name |value

var …

Sets a command structure global variable with variable_name to the

specified value. The value specification is evaluated by the Python parser so can

be a list, or dictionary definition but must include quotes for string definitions.

Global variables names preceded by a ‘$’ can be used in default fields, function

and callback fields, argument declarations for callbacks, and for setting tk

configurations.

*variable_name: Name for the variable.

*value: Value for the variable in proper Python syntax.

D. Command Initialization

command
command |title |function |event

Begins a command definition. This will generally be followed by a number

of options which can be set by the user and completed with a button (or buttons)

allowing execution of the associated function. A command with no associated GUI

options will be executed immediately and will not prompt the user for input.

Variables which do not require user input (i.e. static variables) may be

specified by the following syntax:

function$keyword=value, keyword=value, …

The function may also be specified in ‘shorthand’ to use the scope prefix (see

prefix, above) by using the syntax:

.function

8

Of course, the two forms can be combined.

NOTE: it is important to remember that everything following the $ separator is

interpreted literally by the Python parser so must have proper object specifications

(i.e. self.parent.object) and must conform to Python syntax.

command example:
command |my command

$ |.my_function$print=’y’,object=self.parent.myobject

(Note the alternative use of the $ character to continue the line)

*title: Unique command title.

*function: The Python function to be called by this command

definition.

command_set
command_set |title

Begins the definition for group of GUI options which does not have an

associated function call. For example a menu bar definition. A command_set is

specified in the same way as a command.

*title: Unique command title.

component
component |title

Begins a component definition. A component is a group of options which

can be reused in any number of command definitions such as a button bar or

menu definition. To use a component in a command definition use the

insert_component option (see below). A component is specified in the same

way as a command.

9

*title: Unique command title.

E. Command Modifiers

Command modifiers are declarations which follow a command declaration and modify

the behavior of the command in various ways.

bind_all

bind_top

bind_all |event |callback

bind_top |event |callback

Binds the event to the callback for all widgets in the current command

definition or to the toplevel window associated with the command.

Note: bind_top should be used with some caution since it will override (or add

to) all event bindings for all widgets enclosed in by the toplevel window.

*event: Event binding.

*callback: Callback to bind event to.

Event Bindings
Event bindings in tkCoLa are specified similar to those in plain Tk. Below

are listed the event bindings and forms recognized by tkCoLa. These definitions

should not be enclosed in brackets (e.g. "<Return>" should be "Return"). If an

event is enclosed in brackets it is interpreted by tkCoLa as a literal Tk event

binding and will be handled as such.

Keys: Used by themselves or with modifiers (below).

[letter/number/character] key press

space/sp space bar

return/ret Return key

tab/tb Tab key

10

escape/esc Escape key

up/uparrow Up arrow key

down/downarrow Down arrow key

left/leftarrow Left arrow key

right/rightarrow Right arrow key

Buttons: Used as "[button]-[123]" where 1,2 or 3 is the number of the

mouse button.

button/but Single button click.

double/dbl Double button click.

Modifiers: Used as "[mod]-[key/button]". These can be combined to

indicate multiple modifiers.

alt Alt or Command key.

ctrl/cntrl/control Control key.

shift/shft Shift key.

option/opt Option key (Macintosh).

label

label |explanatory_text

Allows an arbitrary amount of explanatory text to be associated with the

command. Under default settings this text will be displayed in an outlined frame

at the bottom of the frame enclosing the command GUI. Multiple label instances

will simply concatenate the explanatory text.

*explanatory_text: Text to assist the user using the command.

static
static |variable=value, variable2=value2, …

This option allows variables that will not be altered by the user to be set (i.e.

variables that will remain static in terms of the command). This can also be

accomplished in the function field of the command definition (see above).

*variable: Name of variable to be set.

*value: Value (in proper Python) for the variable.

11

default_callback
default_callback |set_default_callback |refresh_function

Defines a callback that will set default values for the variables when the

command is invoked. The refresh_function field may be used to optionally define

a function that, when invoked will first cause the set_default_callback to be called.

This option has not been rigorously tested and should be used with caution. See

also the Special Command Structure Methods.

*set_default_callback: A valid Python function which accepts a

variable, value_dict which is a dictionary of variable

names (as keys) and associated values from the

command’s options and returns the same dictionary

with appropriate default values for each variable.

refresh_function: Defines an existing Python function which will now

cause the set_default_callback to be invoked each time

the refresh_function is called. This option can be

somewhat dangerous since the command_structure

modifies the definition of the refresh_function to first

invoke the set_default_callback then invoke the

original refresh_function. The original refresh_function

will be returned to its original state upon normal exit of

the command.

post_command
post_command |function |pass_args_flag

Adds a function to the post_commands list. This is a list of functions which

will be executed following the function defined by the command definition. This

might be useful for updates, messages, etc.

*function: A valid Python function to be called after the command

is finished.

pass_args_flag: If true the variables from the command will be passed

along to the function, if false no variables will be

passed. Default is true.

12

command_flag
command_flag |evaluation_flag

Allows the user to make the display and operation of the command

contingent upon the state of the evaluation_flag. The command will be inoperative

if the evaluation flag returns zero.

*evaluation_flag: A valid python method, function, or variable. If this

flag is non-zero at the time of command execution, the

command will operate normally. If the flag is zero, the

command will not be displayed.

F. Options

Options follow a command initialization and define the user interface for the command,

both in terms of information required of the user and graphic layout.

For options with callbacks, the option itself (which is a class instance, see below), can be

passed as the variable option. For an example, see the Color Picker Example section, below.

Miscellaneous Options

insert_component
insert_component |component_title

Inserts the contents of the specified component. Component insertions are

parsed during command structure initialization. This means that a component

must be defined prior to its insertion in a command file.

*component_title: Title of a valid component already defined.

13

Formatting Options

row/column
row |frame_label |in_frame |padx |pady |side

column |frame_label |in_frame |padx |pady |side

Defines the start of a new row or column ‘frame’ for layout of options.

Options following this definition will be arranged according to the rules of the

format definition. In the case of rows, options are displayed starting at the left and

are added to the right in a row arrangement. In the case of columns, options are

displayed starting at the top and are added below in a column formation. Rows

and columns are terminated by another row or column definition.

Layout of more complex interfaces often takes a little trial and error with

regards to placement and use of the rows and columns. Look at the demo

command files provided for examples.

frame_label: Label for the ‘frame’ defined by the row or column.

This label needs to be unique only in the context of the

command being defined. Defaults to unspecified.

in_frame: Valid label of a frame in the command which has

already been defined. This allows for layouts like a row

of columns or a column of rows. If no enclosing frame

is specified the new frame will be enclosed by the

frame defined last (if no frames have been specified,

the new frame will be enclosed by the frame enclosing

the command itself).

The special label _top refers to the frame which

encloses the command.

padx: Space to be added between options horizontally.

Default is 5 pixels.

pady: Space to be added between options vertically. Default

is 5 pixels.

14

side: To which side of the enclosing frame will the new

frame stick. top/bottom/left/right are valid

values. Default for rows is top, columns is left.

set_tk_config/add_tk_config
set_tk_config |tk_var:value, tk_var2:value2, …

add_tk_config |tk_var:value, tk_var2:value2, …

Allows control over the behavior of the Tk widgets using their configuration

keywords.

These declarations are sensitive to location in the command file. If they precede all

command definitions (including components) they set a global Tk configuration, defining

the default for all options. If they are used directly following a command declaration (but

before any options) they modify the configuration for all of the options in that command.

Finally, if they are used following an option they modify the configuration for that option

only. The declaration set_tk_config will override all previous configurations and the

declaration add_tk_config will add to any existing configuration with duplicate

keywords overriding existing ones.

The command structure checks to see if the keywords are appropriate for each

widget so no Tk errors should be encountered. This means that configurations for

multiple widget types can be defined in a single global declaration. Some useful

configuration keywords are listed below.

tk_var: Keyword of a valid Tk configuration option. Leaving

this field blank will reset the tk_configuration to

default parameters.

value: Value for the option, in proper Python (e.g. quotes

surrounding strings, etc.).

Tk Configuration Options
background background color of widget.

foreground color of text, controls, etc. of widgets.

font font to be used for text.

15

width width of widget (can be used to standardize a column

of buttons, for example).

height height of widget.

callback Python function to be called when the widget is used.

This should probably be used only for individual

options.

Interface Options

In general interface options create a widget which allow the user to interact with the

command. Many interface options have an associated variable which will have a value that the

user determines. When a command is terminated by the user, the variables from all of the

options will be passed as keywords to the function(s) associated with the command. Notes

applicable to all interface options follow.

var_name field
The var_name is the name that will be passed as a keyword for the

option. This means that it must fit the requirements for a valid Python

keyword, i.e. not have any spaces or other special characters. In addition

since Python prohibits passing redundant keywords, the var_name must be

unique for the command. This is especially important to keep in mind

when dealing with inserted components which have variables.

label field
The label field is a text field which serves to identify the function of

the option to the user. Labels for buttons specify the text that will be placed

on the button, etc.

var_type field
Specifies the type of variable for this option. Valid variable types are

as follows:

16

Int/int/INT/I/i integer type variable.

Float/float/F/f float type variable.

String/string/S/s string type variable.

list_int/L_I/l_i *list of integers.

list_float/L_F/l_f *list of floats.

list_string/L_S/l_s *list of strings.

default field
Specifies a default value that will be assigned to the option when the

command is invoked. Depending on the type of option the default value

may specify the state of the widget or a default value of a type appropriate

for the variable type specified. In the case of strings, no enclosing quotes are

necessary for default values.

Most default values can be specified using either Python

declarations or by specifying a previously defined tkCoLa global variable.

In both cases these fields must be preceded by a ‘$’.

Option Examples
set_var |FILENAME |”default_file_name.txt”

command |Enter File Name |.open_file

entry |file |File: |str |$FILENAME

insert_component |command_bar

This example creates a command which prompts the user for a file

name, where the default value is specified as a tkCoLa global

variable. The set_var declaration establishes the tkCoLa global

variable FILENAME. The command declaration begins the command

definition. The entry declaration then uses the global variable

FILENAME as the default value. Finally, a command_bar component

is inserted to allow the user to close the window (see the section on

Closing a Command, below).

17

command |Enter File Name |.open_file

entry |file |File: |str

|$self.parent.file_str

insert_component |command_bar

This example serves the same purpose as the previous example,

however, the default file name is obtained by looking at the variable

self.parent.file_str, which could be different every time the

command is invoked.

entry
entry |var_name |label |var_type |default

Creates a text entry widget with a text label to the left of the entry field. The

variable is set to the input value.

*var_name: Variable name for the option.

*label: Label to be placed on to the left of the text entry field.

*var_type: Variable type of the option’s variable. Supports list-

type variables (see Option Generators, below).

*default: Default value for the variable.

check
check |var_name |label |var_type |on_val |off_val |default

Creates a checkbox for entry of binary values. The label is placed to the left

of the checkbox, though in future releases this should be mutable.

*var_name: Variable name for the option.

*label: Label to be placed on to the left of the text entry field.

var_type: Variable type of the option’s variable. Defaults to

integer.

on_val: Value given to the variable when the checkbox is

checked. Defaults to 1.

18

off_val: Value given to the variable when the checkbox is not

checked. Defaults to 0.

default: If true, the checkbox starts out checked, if false the box

starts unchecked. Defaults to false.

link
link |on_list |off_list

Adds functionality to the checkbox definition which it must follow.

Widgets in the option indicated by the variable names in the on_list are active

when the checkbox is checked, while those indicated in the off_list are

disabled (grey and unresponsive to the user).

on_list: List of variable names (separated by commas)

indicating the options that will be enabled when the

box is checked (and disabled when it is not) in the

containing command definition.

off_list: List of variable names indicating options that will be

enabled when the box is not checked (and disabled

when it is).

scale
scale |var_name |label |type |from |to |inc |def |orient

Creates a scale widget.

*var_name: Variable name for the option.

*label: Label to be placed on to the left of the text entry field.

*type: Variable type of the option’s variable (int or float).

*from: Starting value (lower bound) of the scale.

*to: Ending value (upper bound) of the scale.

*inc: Increment for the scale slider.

*def: Starting value for the slider.

orient: Orientation of the slider, vertical or horizontal. Default

is horizontal.

19

rebutton
rebutton |var_name |label |callback |var_type |default

$ |pass_args_flag

Creates a button widget which invokes a Python function. The Python

function callback should return a value which will be associated with the variable

for the option. Note: rebutton is short for ‘return-button’.

*var_name: Variable name for the option.

*label: Label to be placed on the button.

*callback: Valid Python function to be called when the user

presses the button.

*var_type: Variable type of the option’s variable.

*default: Default value for the variable.

pass_args_flag: If true, the variables associated with the entire

command will be passed to the callback, if false, no

variables will be passed. Defaults to true.

frame
frame |label |fill_callback |var_name |var_type

$ |get_value_callback

Creates an empty frame and calls the specified callback to fill it. Note that

this option does not necessarily have a variable associated with it.

*fill_callback: Valid Python function to be called to fill the frame. The

function should take a keyword, ‘frame’ that gives the

Tk frame to be filled. If the function returns any object

or value it can be referenced by the variable

option.object.

*label: Label to be placed on the button.

var_name: Variable name for the option.

var_type: Variable type of the option’s variable.

get_value_callback: A valid Python function which will return the value for

the variable.

20

radio
radio |var_name |label |var_type |default |orientation

Begins a radio-button definition. The radio declaration must be directly

followed by at least two radopt declarations (see below).

*var_name: Variable name for the option.

*label: Label to be placed at the top of the radio buttons.

*var_type: Variable type of the option’s variable.

*default: The default must be a valid label of one of the radio’s

radopts.

orientation: Horizontal or vertical. Default is vertical.

radopt
radopt |label |value

Adds a radio button item to a radio definition.

*label: Label for the radio button.

*value: Associated value for this choice.

pop/pop_menu/popup_menu
pop |var_name |label |var_type |callback |default

$ |fill_callback |display_keys

pop_menu …

popup_menu …

Begins a menu definition for a pop-up menu which returns a variable. This

definition requires either a fill_callback function to fill the menu, or that the

declaration be followed by a list of menu_item declarations (see below).

*var_name: Variable name for the option.

*label: Label to be used as the menu title.

*var_type: Variable type of the option’s variable.

callback: Python function to be called when a selection is made

from the menu.

21

default: Label of the default menu_item.

fill_callback: Valid Python function to be called to fill the menu. The

function will be passed the keyword ‘menu’ which

refers to the Tk menu to be filled.

display_keys: If true, accelerator keys will be displayed in the menu

for those items that have them specified.

menu_item
menu_item |label |value |callback |key

Adds a selectable item to a menu definition.

*label: Label for the menu item.

*value: Associated value for this choice.

callback: Python function to be called when this menu

item is selected.

key: Defines a key-type event binding (see Option

Modifiers, below for a list) which will invoke the

menu command.

menu_sep/menu_separator
menu_sep

menu_separator

Adds a menu separator item to a menu definition.

select/multi_select
select |label |list_var |select_action

multi_select …

Creates a selectable list box filled with the contents of the list_var. The

keyword select creates a single item selection box, multi_select creates a list box

from which the user can make multiple selections.

*label: Label to be placed at the top of the list box.

*list_var: Variable name for the option.

*select_action: Python function that is called when a selection is made.

22

open_file
open_file |var_name |key |pattern |default |multi_file

$ |path_file

Creates a box with selectable directories and files. The var_name keyword

is returned as a string unless multi_file is true. If multi_file is true the var_name is

returned as a tuple of the selected file names. This supports keys for saving

default parameters and behaves in a similar manner to the FileDialog class from

tkinter.

Note: in order for verification, filtering, and key usage to work use the

_fopen_bar default definition for the command bar with the associated

command.

*var_name: The variable name for the option.

key: A permanent key for saving file selection parameters

input by the user. This may include the $ Python

variable designations. Defaults to none.

pattern: Pattern for the file filter. This may include the $ Python

variable designations. Defaults to ‘*’.

default: File name to initially fill the file selection box. This may

include the $ Python variable designations. Defaults to

none.

multi_file: If true, users may select multiple files from the file

selection list by clicking and dragging with the mouse,

selecting a range with the shift key depressed, or

selecting/deselecting individual files with the control

key depressed. Defaults to false, single file selection.

path_file: If this option is true then the entire filename, with path

is returned for the variable. If it is false only the file

portion is returned. Defaults to true.

save_file
save_file |var_name |key |pattern |default

23

Creates a box with selectable directories and files. The var_name keyword

is returned as a string. This option supports keys for saving default parameters

and behaves in a similar manner to the FileDialog class from tkinter.

Note: in order for verification, filtering, and key usage to work use the

_fsave_bar default definition for the command bar with the associated

command.

*var_name: The variable name for the option.

key: A permanent key for saving file selection parameters

input by the user. This may include the $ Python

variable designations. Defaults to none.

pattern: Pattern for the file filter. This may include the $ Python

variable designations. Defaults to ‘*’.

default: File name to initially fill the file selection box. This may

include the $ Python variable designations. Defaults to

none.

Inert Options

Inert options have no variable associated with them.

text
text |label |default

Creates a line of text which can not be altered by the user.

*label: Text to be displayed in the command layout. Inclusion

of a variable name between ‘$’s allows for

modification of the string by the default callback.

default: Starting default value for the var_name (if any).

Text Example

24

text |The name of the file is: $file_name$.

|untitled.txt

This example will produce a text string with the default value replacing the

$file_name$ string in the label. This option is useful if a default callback

is set. In this case the default callback can set the file_name keyword to

display static text.

button
button |label |callback |pass_args_flag

Creates a button widget which invokes a Python function. This option returns no

variable.

*label: Label to be placed on the button.

*callback: Valid Python function to be called when the user

presses the button.

pass_args_flag: If true, the variables associated with the entire

command will be passed to the callback, if false, no

variables will be passed.

menu
menu |label |fill_callback |tearoff_flag |display_keys

Begins a menu definition which does not return a variable. This is a simple menu

which allows selection of items, each item having an associated callback. This definition

must either have a fill_callback function or be immediately followed by a list of

menu_item declarations (see pop_menu above).

*label: Label to be placed on the button.

fill_callback: Valid Python function to be called when the user

presses the button. If no fill_callback is specified this

declaration must be followed by a list of menu_items.

tearoff_flag: If true, the menu will be a tearoff menu. Defaults to

false.

25

display_keys: If true, the menu will display accelerator keys for the

menu items that have them.

G. Option Generators
Option generators are special option definitions which allow creation of multiple

individual options at the time of command execution based on a list- or dict-type variable. The

existing Python list- or dictionary- type variable should be placed in the default field. The return

variable will be in the form of a list or dictionary. Returned lists are identical order as the input

list. Returned dictionaries have keys corresponding to the input dictionary. Each time the option

is called it generates a list of n options of the specified type, each with a default value provided

by the value of the list or dictionary member, where n is the number of members in the list or

dictionary.

Lists (or dictionaries) of objects with attributes may also be used as long as the attribute

to be used for the default value is specified. The attribute is specified using the following

notation:

list_var$attribute

This requires, of course, that the list be composed of objects which have the specified attribute.

See the example listed below for details.

button_gen
button_gen |var |label |callback |type |list_var |pass_flag

When the command is displayed, generates a series of rebutton options

based on the values contained in the list_var.

*var: Variable name for the returned list or dictionary.

*label: Label for the buttons.

*callback: Callback for the buttons.

*type: Variable type for the individual returned values.

*list_var: Python variable used to generate the buttons, either a

list, tuple, or dictionary. If the variable consists of a list

(or dictionary) of class instances, a specific class

26

attribute must be specified using the

list_var$attribute syntax.

pass_flag: If true, the variable/value keyword pairs will be

passed to the callback, if false they won’t.

check_gen
check_gen |var |label |type |on_val |off_val |list_var

When the command is displayed, generates a series of check options based

on the values contained in the list_var.

*var: Variable name for the returned list or dictionary.

*label: Label for the buttons.

*type: Variable type for the individual returned values.

*on_val: Value for the variable when the checkbutton is

checked.

*off_val: Value for the variable when the checkbutton is

unchecked.

*list_var: Python variable used to generate the buttons, either a

list, tuple, or dictionary. If the variable consists of a list

(or dictionary) of class instances, a specific class

attribute must be specified using the

list_var$attribute syntax.

entry_gen
entry_gen |var |label |type |list_var

When the command is displayed, generates a series of entry options based

on the values contained in the list_var.

*var: Variable name for the returned list or dictionary.

*label: Label for the entry options.

*type: Variable type for the individual returned values.

27

*list_var: Python variable used to generate the entry options,

either a list, tuple, or dictionary. If the variable consists

of a list (or dictionary) of class instances, a specific class

attribute must be specified using the

list_var$attribute syntax.

Generator Examples
entry_gen |list ||string |self.parent.my_list

This simple example will generate n entry options, corresponding to the

members of self.parent.my_list, with blank labels. Each entry will start out

with the value of the corresponding list member. The variable returned by this

option (and passed as a keyword) will look like this;

list=(input_string[0], input_string[1], …

input_string[n]).

check_gen |list |Flag |i |1 |0 |self.parent.ob_dict$use_flag

This example will generate n checkbox options each labeled “Flag n”. The

checkboxes will be on or off according to the value of the variable

self.parent.object_dict[n].use_flag.

The variable returned will look like this;

list={‘key0’:input_value[0], ‘key1’:input_value[1], …

‘keyn’:input_value[n]}

H. Option Modifiers

bind

bind |event |callback

Adds an event binding (see bind_top under Command Modifiers above)

to the option which it follows.

28

*event: tkCoLa version of an event to be bound.

*callback: Callback to bind the event to.

callback
callback |callback |pass_flag

Adds a callback to an option. Every time the option is accessed by the user

the callback will be called.

*callback: Python method or function to call each time the option

is changed by the user.

pass_flag: If true all the keyword/value pairs from the command

will be included in the callback. Default is true.

set_state
set_state |option_state

disable(d)

Sets the initial state of the option, normal or disabled. If the option is set as

disabled the user will not be able to interact with it and the text in the option will

be gray. This is especially useful when coupled with a check option having a

callback which toggles the state of this option. See section IV, below for an

example. The keyword, disable (or disabled), is an alias to set_state and

disables the option.

option_state: Acceptable values are true, false, normal, or disabled.

default_color
default_color |where

A modifier specifically for setting the color of an option’s widgets based on

the options value or default. This means that the option must be returning a valid

Tk color name in the form of a string. See section IV, for an example of usage.

29

where: Set the color to foreground or background of widgets.

Default is background.

III. Command Class Descriptions

A. class Command_Structure

B. class Command_Record
Base class for command definitions. Command options are stored as a list (opt_list).

title Unique title for the command, used as a reference as well as

an explanatory title for users.

command String containing the function field from the command

definition.

parent Python reference to the parental structure (i.e. the parent of

the command manager).

manager Python reference to the command’s command manager.

mem If true, default values will be remembered from one

invocation of this command to the next (in the case of simple

default declarations).

echo If true, commands will be printed to the screen when they are

executed. Good for debugging.

tk_config tk_config dictionary to be applied to the options in this

command.

C. class Option
The base class for all interface options, aside from the special cases of Generator Options

which create a list of options managed by a Generator_Option class.

Attributes

30

type The type of option, this will reflect the option’s tkCoLa

keyword (e.g. entry, button, frame, etc.).

var_name The name of the option’s variable, if any.

label The option’s label.

var_type The option’s variable type (a Python type, not a string).

default The default value for the option.

variable The user input value to be returned with the variable.

command The option’s parent command instance.

widgets A dictionary of the tk widgets associated with the option.

tk_config The option’s tk_config options (in the form of a dictionary).

Methods
toggle Toggles the activation state of the widgets in the option.

get Returns a Tuple containing the option’s variable name

followed by the value option.variable.

update_default Updates the value for the option from the default value.

draw_option Given a frame and configuration options (tk style), draws the

option in the frame.

IV. Use of the Command Structure

A. Initializing a Command Structure
First make sure that the Commands module has been imported in the program. Then, to

initialize the command structure, create an instance of the Command_Structure class passing

the name of the command file to be used as the first argument and being sure to pass the

controlling instance (self) as the parent. Be sure to make a permanent reference to the

command_structure if your program will need to reference it directly.

Command Structure Example

31

make the command struct

command_file = COMMAND_PATH + ‘my_commands.com’

self.command_struct = Commands.Command_Struct(command_file,

parent=self)

B. Adding a Command Menu
The command structure method menu_init can be used to initialize a command menu.

method Command_Structure.menu_init
Given a frame initialize a command menu which allows the user to choose from

commands contained in the menu_groups.

Command menus can be initiated from a command file (say a menu bar

command_set) by setting the fill_callback of a frame option to the menu_init method.

From inside a command file the CoLa shortcut listed below can be used instead of the full

definition, self.parent.command_structure.menu_init.

CoLa shortcut: menu_init

Options

*frame/menu_frame The Tk frame that will hold the command menu.

menu_groups A list of groups which will initially be included in the

menu.

menu_title The title to give the menu, defaults to

‘Commands’.

menu_type ‘normal’ or ‘cascade’. If normal, all command groups

will be listed linearly in the menu. If cascade, each

group will have its own cascading menu with

associated commands. Defaults to normal.

menu_select_color Color for the currently active command to be listed in

the menu, defaults to blue.

32

command_frame Frame to display requested commands. Default is to

open a new Tk window for the commands.

Menu Example
command_set |menu_bar

row |||0|0

menu |File

menu_item |Load File ||.open_file

menu_item |Save File ||.save_file

menu_item |Save File As... ||.saveas_file

menu_item |Close ||.close

frame |command_menu

$ |.command_struct.menu_init$menu_groups=(‘gr1, ‘gr2’),

$ menu_type='cascade'

This example illustrates how to make a command menu from within a command

file. The example above first defines a row with no padding (so that the menu

buttons line up properly) then defines a file menu and finally defines a frame

which has as its fill_callback a call to the menu_init method.

method Command_Structure.menu_set_groups
To change the groups associated with the particular command menu use the

command structure method menu_set_groups. Calling this method forces an update

of the command menu specified.

CoLa Shortcut: menu_groups

Options
*menu_title The menu title of the command menu to be modified.

*menu_groups A list of the groups to be included in the command

menu.

33

C. Opening a Command

method Command_Structure.manager_window
Opens a command in a new window or the frame provided.

CoLa Shortcut: manager_window

Options
*command_title Valid title of a command present in the

command_structure

-or-

*command Python reference to the actual command instance. This

can be obtained using the find_by_title method

explained below.

frame/command_frame Frame for the command to be opened in. Default is to

open a new window.

menu_title Menu that this command is associated with. This is

mainly for internal use but might come in handy.

window_title Title for the command window.

window_config A valid set of options (either keyword or dictionary

style) passed to the tk Frame instance for the command

window. This can be used to set background color,

border width, etc.

data The data keyword can be used to pass any Python

reference to the command. The object or variable can

then be referenced as command.data (from the

opened command this is of course, self.data). This

can be used for a variety of purposes involving one

34

command window calling another. See the Color

Picker description below for an example.

data_process A Python method which either takes the data above,

modifies it in some way and returns the modified data

or if no data is provided, generates the data that will

become command.data.

D. Closing a Command
Closing a command window is generally up to the user. It is convenient to assign each of

the methods below to a button and make this into a component (see Example following).

method Command_Structure.manager_ok
Closes the current command and passes its associated variables to the command’s

function(s).

CoLa Shortcut: ok

Options
destroy flag, true if the frame should be destroyed, false if the

frame should be hidden, not destroyed.

method Command_Structure.manager_cancel
Closes the current command but does not invoke the command’s function(s).

CoLa Shortcut: cancel

Options
destroy flag, true if the frame should be destroyed, false if the

frame should be hidden, not destroyed.

35

method Command_Structure.manager_apply
Invokes the command’s function(s) but doesn’t close the associated window.

CoLa Shortcut: apply

Buttons Example
component |_command_bar

set_tk_config |font:bold

column |_command_bar |_top | | |bottom

row | |_command_bar |5

button |OK |ok |no

button |Apply |apply |no

button |Cancel |cancel |no

row |rest |_top |||top

column ||rest

This example creates a reusable component which consists of three buttons. An

OK button, an Apply button and a cancel button. The text for the buttons is set to

bold using the set_tk_config declaration. The first column establishes that the

bar will be located at the bottom of the top frame. The row declaration assures that

the buttons will be arranged horizontally. Finally the row and column at the

bottom re-establish the normal function for the remainder of the command so that

the _command_bar can be included at the start of the command definition. The

_command_bar component is included in the default definitions for tkCoLa (see

Default Definitions, below).

E. Special Command Structure Methods
Several other useful methods are also available.

36

method Command.command_default_object
When used as the Default_Callback, this method provides a way of linking objects

with attributes to the default values of corresponding options. Objects are passed as

arguments and values attribute names which match variable names of the command

options will be used as the default values for the option.

CoLa Shortcuts: command_default_object

cdo

Options
*[arguments] An arbitrary number of objects with attributes that will

be searched in order for matches to option variable

names.

method Command.command_return_object
Matches attribute names in the objects passed as arguments with the keywords

passed from the command and sets the corresponding attribute values to the value

passed in the keyword. Provides an easy way to implement an class editor by simply

matching the attribute names with the option variable names.

CoLa Shortcuts: command_return_object

cro

Options
*[arguments] An arbitrary number of objects with attributes that will

be searched in order for matches to option variable

names.

V. tkCoLa Examples
This section gives a tutorial of some basic examples of how to use the tkCoLa language.

The Color Picker Example, below, provides a more complicated example.

37

A. A Simple Command Example
Say you have a method in your application which prints out information (print_info)

about the user, and you wish to prompt the user for this information (name, age, PIN) before

calling this method. We’ll assume that your application has a command structure and a way for

the user to interact with commands (like a menu). First we’ll create the print_info method,

then the command to access it, Input Information.

class Application:

…

def print_info(self, name=None, age=None, PIN=None, **kw):

print “User Name: %20s” % name

print “Age: %5i” % age

print “Now I have your PIN! %s” % PIN

This is a Python method which should be included under your main application.

It takes three keywords, name, age and PIN, and it can also handle any number of other

keywords. This is important since the command structure will always pass back more

keywords than are included with your command. It simply prints out a silly message

using the input information. Using only Tkinter, prompting the user for input would

require the use of a dialog class and writing who-knows-how-many more lines of code

for your application. Using tkCoLa it simply requires the following tkCoLa command

definition.

A tkCoLa Command to allow user input to the method print_info

command |Input Information |.print_info

label |Trust Me!

entry |name |Your Name: |S |Bob Smith

entry |age |Your Age: |I |35

entry |PIN |Your ATM PIN: |S |0000

insert_component |_command_bar

38

Place this command definition in your tkCoLa command file for this application (the one

used by the application’s command structure). Make sure that the command is in a group

which will be accessible to the user (through a Command menu, etc.). The user may now

invoke the command, input the information, press the Ok button (included with the

_command_bar component) and watch the fun.

This is a very simple command definition, the defaults for the entry options will

always start out with the same values. Note that if the memory option is enabled for your

command structure the command will remember the values last input into the command

(during that session of the application) and will use those as defaults.

B. A More Complex Command Example
You have an application which keeps a database of user information as a list of

individual records and it has some kind of selection method for the list. This example explains

how to use tkCoLa to create a record editor for the database. The application variable

selected_record, refers to the currently selected Record instance of the database list. To

make things clear, we’ll first look at the class Record which holds information then look at how

to use this to create a command.

class Record:

def __init__(self, name=None, age=None,

relation=None, terms=None):

self.name = name # name

self.age = age # age

self.relation = relation # how do we know them?

self.terms = terms # are we on speaking terms?

So any instance of the class Record will have the attributes listed above and the

application variable selected_record is such an instance. Next, we’ll create a

command to allow editing of a Record class instance.

Command to allow editing of the selected_record,

a Record class instance.

39

command |Edit Selected Record

$ |command_return_object$parent.selected_record

label |Edit Member Record

default_callback

$ |command_default_object$parent.selected_record

entry |name |Member Name: |S |Bob Johnson

entry |age |Member Age: |I |25

radio |relation |Relationship |S |No Relation

radopt |No Relation |none

radopt |Relative |rela

radopt |Friend |frnd

radopt |Business |busn

check |terms |Speaking Terms? |S |yes |no |on

insert_component |_command_bar

This example illustrates how tkCoLa can be used to obviate the need for an

associated Python method in your application.

First notice that the command defines four options and each option has a variable

which matches the attribute name of the four Record attributes. Next, the

default_callback is set to command_default_object and the application’s

selected_record is passed as the argument. This means that when the command is

invoked it will fill the defaults for each option by looking through the

selected_record object and matching variable names with attribute names.

To finish, the function which is called when the user presses the Ok button is the

command_return_object method which essentially does the reverse of the

command_default_object method. It looks through the selected_record and for

variable names and replaces values of the object with those input by the user.

C. The Application GUI Example
This example demonstrates how to use tkCoLa to do the GUI layout for an application,

including menu’s, a button bar, status line, and an application defined frame.

40

D. The Color Picker Example
This example illustrates how to set up a command that allows the user to choose colors

for several different features of a document. It employs several features of the command

structure to accomplish this in a user friendly way.

The Color_Picker class is included in the Commands module and is an example of how a

user defined widget (-type thing ;) can be used in conjunction with the tkCoLa to enhance the

GUI.

The command will display several buttons. When pressed, each of the buttons will open

a color picker command, which will return the picked color to the original command window.

The _Color Picker command is included in the tkCoLa default definitions (see Default

Definitions, below).

class Color_Picker
A class which creates a widget to allow the user to choose from a panel of color

boxes or to enter a valid color name.

Options
color_map A list of valid tk color names to be displayed as boxes.

Defaults to a standard color map defined in the

Commands module.

x_box X-dimension (in pixels) of each color box. Defaults to

10.

y_box Y-dimension (in pixels) of each color box. Defaults to

10.

outline If 1, outline the each color box in black. Defaults to

true.

rows Number of boxes displayed on each row of the color

picker. Defaults to 15.

show_current If 1, display the color which the mouse is currently

over in a separate color box. Defaults to 1.

name_box If 1, allow the user to enter their own color names in a

text entry box. Defaults to 1.

41

show If 1, on class instantiation, make and show the color

picker (requires that a frame be specified). Defaults to

1.

frame Tk frame in which to create the color_picker. If not

provided the make method must be called to show the

widget.

color Tk color name for initial default color selection.

Defaults to black.

Methods
make Draws the Color_Picker widget in the specified frame

with the specified default color. It is not necessary to

call this method if the widget was shown during class

instantiation.

frame Tk frame to draw the widget in.

color Initial tk color.

get Returns the currently picked (or input) color name.

Warning: this method does not check to see if the name

is a valid tk color.

Creating the _Color_Picker Command
First we’ll make a command which will display the color_picker widget.

command |_Color_Picker |command_return_object$self.data

default_callback |command_default_object$self.data

frame |color_picker

$

|Color_Picker$x_box=15,y_box=15,rows=11

$ |variable |string

$ |option.object.get

row

42

insert_component |_simple_bar

The command declaration begins a command definition for our window. Note

that the function that is associated with the command is the comand_return_object

with the object passed being the command’s self.data variable. This suggests that we

will pass some object with attributes to this command from the calling command. The

default_callback declaration sets the command’s default callback to

command_default_object, with the self.data as the argument. Using these two

methods (cro and cdo) together is an easy way to allow editing of an object (or objects).

In this case the self.data object.

The frame declaration defines a frame called color_picker, which has a string-type

variable with the name variable. This implies that the object which is passed to

self.data has an attribute, variable, we’ll see why this is the case in the next step.

The fill_callback for the frame creates an instance of the Color_Picker class and sets

the x_box and y_box options to 15 and the number of boxes in each row to 11 to make it

look nice. It leaves the color_map as the default which means that the color_map defined

in the Commands module is used. Finally, the get_value_callback is referenced by

the method option.object.get, since the color_picker instance is stored in the

option.object variable (see the frame option above).

Finally, Ok and Cancel buttons are provided to allow the user to close the

window.

The Example Command
Creation of a command which uses the Color_Picker command described above is

simple, but requires a little explanation. Here is an example of a command with two

color_picker buttons. In this case the function self.parent.set_colors takes the returned

keyword/value pairs (back_color=[some_color], text_color=[some_color],

border_color=[some_color]) and sets the appropriate variables in the document and presumably

forces an update of the document in some way to display the new colors.

command |Set Document Colors |.set_colors

default_callback |cdo$parent

43

label |Press the buttons to set colors for the

label |indicated document features.

rebutton |back_color |Background

$ |manager_window$command_title=’_Color_Picker’,

$ window_config=’def’, data=option |string |black|no

add_tk_config |width:14

rebutton |text_color |Text Color

$ |manager_window$command_title=’Color_Picker’,

$ window_config=’def’, data=option |string |white|no

add_tk_config |width:14

rebutton |border_color |Border Color

$ |manager_window$command_title=’Color_Picker’,

$ window_config=’def’, data=option |string |red|no

add_tk_config |width:14

insert_component |_command_bar

The default callback is set to the command_default_object method, with the

argument passed being parent indicating that the parent has the attributes

corresponding to the three variable names of the command. The label explains to the user

what to do with the buttons.

The rebuttons have different variable names and labels but the remainder of the

declarations are all identical (with the exception of the default values which are

overridden by the default callback anyway). The rebutton’s callback is set to open

the command we defined above, _Color_Picker, and it passes the option itself as the data

keyword. Since the option has the attribute variable (the value which will be

returned, not the variable name) the _Color_Picker window can access this to set it’s

default value and will modify the option.variable when Ok is pressed.

The standard _command_bar component is inserted at the end of the command to

allow the user to terminate the command. The add_tk_config declarations following the

rebutton declarations ensure that the buttons will all have the same width and so will

line up nicely.

44

VI. Default Definitions

	Table of Contents
	I. tkCoLa Overview
	II. Language Syntax
	A. Overview
	B. Special Characters
	C. Global Declarations
	D. Command Initialization
	E. Command Modifiers
	F. Options
	Miscellaneous
	Formatting
	Interface
	Inert

	G. Option Generators
	H. Option Modifiers

	III. Class Descriptions
	IV. Command Structure
	V. tkCoLa Examples
	VI. Default Definitions

